

FIELD TECHNICIAN TRAINING

Study Guide

January 2016

ARIZ 103b Sampling Bituminous Materials

SIZE OF SAMPLES		Section	
	1.	A minimum of 1 gal. for Asphalt Binder	2.1
	2.	A minimum of two ½ gal. containers per sample of Emulsions.	2.2
CONT	AINE	RS	
	3.	Containers for Asphalt Binder shall be double friction top cans.	3.1
	4.	Containers for Emulsions shall be wide mouth containers made of plastic.	3.2
PROTE	ECTI	ON AND PRESERVATION OF SAMPLES	
	5.	Containers shall be new , clean and the top and container shall fit together tightly.	4.1
	6.	Immediately after filling, the container shall be tightly sealed.	4.2
	7.	If needed clean the container with a clean dry cloth, do not use solvents.	4.3
	8.	Protect Emulsions from freezing .	4.4
	9.	Avoid transferring samples from one container to another.	4.5
	10.	Identify containers using sample tags attached securely to the side , and clearly identify the container on the side using permanent marker .	4.6
PROCI	EDU	RE	
	11.	Samples of Asphalt Binder shall be taken at the last possible point before it is introduced into the hot plant . Usually from a spigot or faucet on the circulation line.	5.1
	12.	Bituminous materials applied to pavement surfaces shall be sampled from the distributor truck at the project.	5.2
	13.	Identify the side of a new container of appropriate size with any pertinent information.	5.3
	14.	Draw off and discard a minimum of one gallon of material before obtaining the sample.	5.4
	15.	Draw off the minimum amount of material required for the type of material being sampled, from the valve. Fill the container to no closer than one inch from the top.	5.5
	16.	Immediately seal the clearly identified container tightly and securely.	5.6

ARIZ 104e Sampling Bituminous Mixtures

SAMPL	ING	S ASPHALT CONCRETE and ASPHALTIC CONCRETE (ASPHALT-RUBBER)	Section	
	1.	Asphaltic Concrete (AC) and Asphaltic Concrete (Asphalt-Rubber) (ARAC) shall be sampled using the plate as described in Subsections 2.4 through 2.6.	2.1	
	2.	Asphaltic Concrete Friction Course (ACFC) and Asphaltic Concrete Friction Course (Asphalt-Rubber) (AR-ACFC) shall be sampled at the plant as described in Subsection 2.7.	2.2	
	3.	For (AC) and (ARAC) place sample plate about 1 foot from the edge of the mat being laid.	2.4	
	4.	Hold the plate in position while the paver passes over the plate by holding the wire down with your foot.	2.4	
	5.	After the paver passes over the plate locate the plate by pulling up on the wire.	2.5	
	6.	Using a square point shovel remove the material from the center of the plate making sure not to remove the sluffed material left in the resultant trench.	2.6	
	7.	As an alternate to using a shovel use a template or "cookie cutter" and remove all the material within the template.	2.6 Note:	
		S ASPHALT CONCRETE FRICTION COURSE (ACFC) or ASPHALT CONCRETEFRICTION ASPHALT-RUBBER) (AR-ACFC)		
	8.	An adequate amount of material is taken from the truck at the plant within five minutes of the loading of the truck.	2.7	
	9.	Sample obtained from at least 3 random locations, approximately 12" below the surface.	2.7	
	10.	Combine and protect the samples to avoid the loss of heat during transport.	2.7	
SAMPL	ING	FINISHED PAVEMENT		
	1.	Samples taken through the complete thickness of the lift with minimum disturbance of the sample.	3.1	
	12.	Obtain sample by coring (preferred) or by the use of a saw, pick, or jackhammer , or other suitable means.	3.3	
	13.	Contain samples in briquette form , transport on flat surface , and protect from deformation or fracture.	3.4	
	14.	Use ice to obtain and/or transport samples.	3.5	
SAMPLING MISCELLANEOUS PLACEMENT OF ASPHALT				
	15.	Sample from the hauling vehicle by random shovelfuls.	4.1	

ARIZ 105f Sampling Soils and Aggregates

SAMPL	SAMPLING STOCKPILES		Section
	1.	Place a wood or metal shield upslope from the sampling point.	2.2
	2.	Remove 3-6 inches of material from in front of the shield.	2.2
	3.	With a square point shovel obtain one shovelful of material near the top , middle and bottom of the stockpile.	2.2
	4.	Obtain one shovelful of material per location .	2.2
	5.	Combine all samples.	2.2
	6.	Samples are taken from each quarter of round stockpiles and from every other section of oblong stockpiles.	Fig. 1.
SAMPL	ING	BINS	
	7.	Allow sufficient material to pass, to ensure uniformity of material.	3.1
	8.	Pass sampling device through the entire cross-section of material being discharged.	3.1
	9.	Repeat as needed to obtain desired amount of material.	3.1
SAMPL	ING	CONVEYOR BELTS	
	10.	Stop the belt and place template on the belt.	4.1.2
	11.	Remove all material from the template; use a brush to obtain all the fine aggregate.	4.1.2
SAMPL	INC	FROM A WINDROW	
	12.	Remove sufficient amount of material from the top of the windrow to obtain a representative sample. Sample is obtained from the center of the freshly exposed portion of the windrow.	5.1
	13.	One shovelful of material is taken from each location.	5.1
	14.	All samples are combined and placed in a container.	5.1
SAMPL	INC	FROM A ROADWAY	
	15.	Three samples taken with a shovel at equal distance apart, across the roadway.	6.1
	16.	Sample taken to the entire depth of the lift being tested.	6.1
	17.	Obtain all material from the hole and combine	6.1

ARIZ 225b (Appendix A) Calibration of Proctor Molds

CA	CALIBRATION		
1.	Molds shall be calibrated at least once a year or sooner if there is reason to question the accuracy of the calibration.	1.1	
2.	Lightly grease the bottom of the mold (split molds grease edges of the split)	1.2	
3.	Attach mold to baseplate	1.3	
4.	Wipe off excess grease.	1.4	
5.	Weigh empty mold, baseplate, and glass plate to at least the nearest 0.1 gram.	1.5	
6.	Fill mold with distilled water at room temperature 77 ± 9°F .	1.6	
7.	Record the temperature of the water to at least the nearest 1°F .	1.7	
8.	Remove air bubbles from the sides and bottom of the mold. Place a glass plate on the mold, eliminating any air bubbles.	1.8	
9.	Remove all water from the outside of the mold, baseplate and glass plate. Weigh the filled mold, baseplate and glass plate to at least the nearest 0.1 gram .	1.9	

ARIZ 227c Rock Correction Procedure

SCOPE Section

 The rock correction procedure shall **not** be used when the material consists of volcanic cinders or light weight **porous** material on which the specific gravity cannot be determined with consistency or when the moisture absorption for the coarse aggregate is **greater than** 4.0%.

1. (a)

2. The rock correction procedure **shall not be used** when the percent rock retained on the No. 4 for **Method A** is less than **10%** or greater than **50%** (greater than **60%** in the case of an aggregate base material); or when the percent rock retained on the 3/4 inch sieve for Alternate **Method D** is less than **10%** or greater than **50%**.

1. (b)

ROCK CORRECTED MAXIMUM DRY DENSITY

3.
$$CMD = \frac{[(100 - PR) \times (MD)] + [(56.2) \times (PR) \times (SG)]}{100}$$

Where:

CMD = Corrected maximum dry density of the total sample containing "PR" percent coarse rock particles, lbs./cu. ft.

PR = "PR4", percent rock retained on the No. 4 sieve for Method A; or "PR3/4" percent rock retained on the 3/4 inch sieve for Alternate Method D.

MD = Maximum dry density from **Proctor** (Method A for plus No.4; or Alternate Method D for plus 3/4 inch), lbs./cu. ft.

SG = Bulk O.D Specific Gravity of the coarse aggregate.

3.

ROCK CORRECTED OPTIMUM MOISTURE CONTENT

4.
$$COM = \frac{[(OM) \times (100 - PR)] + PR}{100}$$

Where: COM = Corrected optimum moisture content for the total sample.

OM = Optimum moisture content for Pass No. 4 (Method A) or pass 3/4 inch material (Alternate Method D).

PR = "PR4", % rock retained on the No.4 sieve for Method *Ai* or "PR¾, "% rock retained on the 3/4 inch sieve for Alternate Method D.

4.

ARIZ 229a Calibration of Standard Sand and Sand Cone

PROCEDURE		Section
1.	Fill apparatus with the sand to be standardized.	3.(a)
2.	Weigh the empty 0.075 cu. ft. mold (6" proctor mold) to at least the nearest 1.0 grams.	3. (b)
3.	Set mold in a pan to catch excess sand.	3. (c)
4.	Invert the apparatus and place the funnel directly over the mold.	3. (d)
5.	Open the valve and let the sand flow until it stops .	3. (e)
6.	Assure there are no vibrations at this time.	3. (e)
7.	Close the valve and carefully remove the apparatus from the mold.	3. (f)
8.	Strike off the sand in the least strokes as possible until the sand is level with the top of the mold.	3. (g)
9.	Tap the side of the mold and weigh to at least the nearest 1.0 gram.	3. (g)
10	. Repeat steps (a) through (g) two more times for an average of three.	3. (h)
11	. Refill the apparatus and weigh it to at least the nearest 1.0 grams .	3. (i)
12	. Place the baseplate in a flat bottom pan.	3. (j)
13	. Invert the apparatus and place it on the baseplate, matching up the marks on the funnel and baseplate.	3. (k)
14	. Open the valve and let the sand flow until it stops	3. (I)
15	. Assure there are no vibrations at this time.	3. (I)
16	. Close the valve and carefully remove the apparatus from the baseplate. Weigh the apparatus to at least the nearest 1.0 grams .	3. (m)
17	. Repeat steps (i) through (j) two more times for an average of three.	3. (n)

ARIZ 230a Field Density by the Sand Cone Method

PREPARATION OF TEST SITE		Section
1.	Clean away all loose material from an area of about 3 feet square where the test is being done. Get below the depth of any sheep's foot roller imprints.	3. (a)
2.	Level the test spot a little larger than the baseplate. Then place the baseplate on the spot to be tested.	3. (b)
PROCEDU	JRE	
3.	Using a hammer and chisel if necessary, dig a hole about the same diameter of the hole in the baseplate. Be careful not deform the hole or disturb the surrounding material in the hole.	4. (a)
4.	The hole should be dug to a depth of usually 6 to 8 inches , the depth of the lift , or according to Table 1 . Dig the hole as quick as possible.	4. (a)
5.	As the hole is being dug, remove all the material from the hole and put it into a suitable container and keep it covered to prevent any loss of moisture.	4. (a)
6.	Weigh the apparatus to at least the nearest gram , and place it on the hole with the cone down. Be sure to line up the match marks on the baseplate and the cone.	4. (b)
7.	Make sure there is no vibration in the area while performing the sand cone procedure.	4. (c)
8.	Open the valve and let the sand flow freely until it stops . Be careful not to jar the apparatus at this time. When the sand stops flowing, close the valve and weigh the apparatus to the nearest gram .	4. (d,e)
REFEREN	CE TO METHOD 'A' PROCTOR	
9.	Weigh the material from the hole to the nearest gram .	5. (a)
10	. Screen the material from the hole over a 3" and #4 sieve.	5. (b)
11	. Clean fines from the rock using a brush	5. (c)
12	. If any rock is retained on the 3" sieve, the sand cone density is not determinable.	5. (d)
13	. Weigh and record the material retained on the #4 sieve .	5. (e)
14	. Immediately obtain a moisture sample from the material passing the #4 sieve .	5. (f)
15	. Determine the percent of rock .	5. (g)
16	. If the rock content is greater than 50% (or 60% in the case of AB) the density is not determinable due to excess rock.	5. (h)

ARIZ 232b/246b One Point Proctor (Method A & D)

PROCEDURE		Section
1	Weigh a sample of about 2500 grams of pass #4 for (method "A"), or about 5000 grams of pass ³ / ₄ " for (method "D")	4.
2.	Thoroughly mix the sample with water to bring it to slightly less than its optimum moisture content.	5. (a)
3.	Place the sample in a pre-weighed 4" (method "A") or 6" (method "D") in a mold and collar three equal layers.	5. (b)
4.	Compact each layer with 25 (method "A") or 56 (method "D") uniformly distributed blows. Drop the rammer vertically and freely from a height of 12" .	5. (b)
5.	While compacting the sample, cover the remaining sample in the pan with a damp cloth.	5. (b)
6.	Total depth of compacted sample is about 5 inches .	5. (b)
7.	Carefully remove the extension collar. Trim the sample even with the top of the mold. Fill voids with fines and smooth off even with top of the mold.	5. (d)
8.	Weigh the mold and sample to the nearest gram .	5. (d)
9.	Remove sample from mold and slice vertically through the center .	5. (e)
10	. Obtain a minimum of 300 gram (method "A") or 600 gram (method "D") sample from the full length and width of one of the cut faces .	5. (e)
11	. Weigh Moisture sample to the nearest 0.1 gram , dry to constant weight at 230°F. Record the percent moisture to the nearest 0.1% .	5. (e)
12	. For the Speedy moisture tester, a representative sample of pass #4 shall be utilized and tested.	5. (e)
13	For (Method "D") the Speedy results must be adjusted for material retained on the #4 sieve.	5.10

ARIZ 235 Nuclear Density and Moisture Content of Soils and Aggregates

GAUGE STABILITY CHECK			Section
	1.	Place the reference standard block on a flat, hard, dry surface. At least 24 " from a vertical projection, 15 ' from any large objects, and 50 ' from another nuclear gauge.	4. (a)
	2.	Seat gauge on standard block in accordance with the gauge operation manual.	4. (b)
	3.	Remove the lock from the source handle.	4. (c)
	4.	Turn on gauge and warm up in accordance with the gauge operation manual.	4. (d)
	5.	Take a standard moisture count and a standard density count.	4. (e)
	6.	Record the standard moisture count and a standard density count in the log book.	4. (f)
	7.	Determine if the standard counts are within the limits for normal operation in accordance with the gauge operation manual.	4. (h)
SITE P	REF	PARATION	
	8.	Select a location for the test at random, at least 24 " from a vertical projection, 15 ' from any large objects, and 50 ' from another nuclear gauge.	5. (a)
	9.	Remove all loose, disturbed, and excess material as necessary to reach the top of the compacted lift to be tested.	5. (b)
	10.	Prepare an area large enough for the gauge by using the scraper plate. Smooth the test area by removing loose stones to obtain maximum contact between the gauge and surface of test site.	5. (b)
	11.	Use native fines, which pass a #10 sieve , or fine dry sand to fill voids only , and level the excess with the scraper plate.	5. (c)
OBTAI	NIN	G NUCLEAR MOISTURE AND DENSITY COUNTS	
	12.	Securely hold the scraper plate in position while driving the drill rod at least 2" deeper then the depth to be tested.	6. (d)
	13.	Remove the drill rod, and scraper plate.	6. (e,f)
	14.	Place the gauge over the hole and extend the probe into the hole to the depth to be tested.	6. (g)
	15.	When the probe is extended to the testing depth, pull the gauge toward the scaler or readout end of the gauge.	6. (h)
	16.	Take a density and moisture count for a minimum of one minute .	6. (i)
	17.	After the count period record the following data, Wet Density (WD), Dry Density (DD), Moisture (M), Percent Moisture (%M), Moisture Counts (MC), and Density Counts (DC).	6. (j)
	18.	If the material being tested is not homogeneous , or has large variations in rock content, it may be necessary to turn the gauge 90 ° and obtain another one minute count. Compare the two moisture and wet density readings, if they differ by 5% or less then average the two readings. If they differ by more than 5% the gauge should be moved to a new test site .	6. (k)

ARIZ 235 (continued)
Nuclear Density and Moisture Content of Soils and Aggregates

PROCTOR DENSITY ROCK CORRECTION	Section
19. If it appears at least 10% of material will be retained on a #4 (Method A) or ¾" (Method D), excavate the area tested (the footprint of the gauge) to the depth of the probe).	7. (b)
20. Obtain a minimum 3000 gram (7 pound) sample of the excavated material reduced by AASHTO T248, Quartering. Sieve material over a 3" sieve to determine the presence of any oversize rock. If any oversize rock is present, report the test is not determinable due to oversize rock.	7. (c,d)
21. If no oversize rock is present , sieve material over a #4 or ³ / ₄ " sieve to determine the Percent of Rock (PR). If the material has 10 to 50 percent (10 to 60 percent if AB) on the #4 (Method A) or 10 to 50 percent on the ³ / ₄ " (Method D), the max proctor density will require a Rock Correction .	7. (c,f)

ARIZ 412b Density of Compacted Bituminous Mixtures – Nuclear Method

GAUGE STABILITY CHECK		Section
1.	Place the reference standard block on a flat, hard, dry surface. At least 15' from any large objects, and 50' from another nuclear gauge.	3. (a)
2.	Seat gauge on standard block in accordance with the gauge operation manual.	3. (b)
3.	Remove the lock from the source handle.	3. (c)
4.	Turn on gauge and warm up in accordance with the gauge operation manual.	3. (d)
5.	Take a standard moisture count and a standard density count.	3. (e)
6.	Record the standard moisture count and a standard density count in the log book.	3. (f)
7.	Determine if the standard counts are within the limits for normal operation in accordance with the gauge operation manual.	3. (h)
PROCEDURE		
8.	Brush away any loose particles from the surface of the test site.	4. (b)
9.	Use not more than one pound of dry minus #10 sand, and spread it over the test site.	4. (b)
10	. Using a straightedge scrape away any excess sand so the sand is visible over the majority of the surface.	4. (b)
11	. Place the gauge on the test site, check for full contact and take a one minute reading. Record the wet density to the nearest 0.1 lb. per cu./ft .	4. (a)
12	. Rotate the gauge 180° in the same footprint and take another one minute reading. Record the wet density to the nearest 0.1 lb. per cu./ft . The two one minute reading are then averaged and recorded to the nearest 0.1 lb. per cu./ft .	4. (a)

AASHTO T217-14 Speedy Moisture Tester

PROCE	PROCEDURE		Section
	1.	Place three scoops of calcium carbide into the cap of the "Speedy Moisture Tester".	5.1
	2.	Prevent the Calcium Chloride from coming into direct contact with water.	Note 4
	3.	Carefully place the two 1.25" steel balls in the tester.	5.2
	4.	Weigh a sample on the scale and place it in the body of the tester.	5.2
	5.	Alternatively, the reagent may be placed in the body and the sample in the cap.	5.2
	6.	With the tester in a horizontal position insert the cap in the tester and seal the cap . Be careful no calcium carbide comes in contact with the sample until the tester is sealed.	5.3
	7.	Raise the test in a vertical position so the sample and reagent will fall into the tester.	5.4
	8.	Shake the tester in a rotating motion in a horizontal position for 60 seconds for granular material and up to 180 seconds for other soils.	5.5
	9.	Time should be permitted to allow dissipation of heat generated by the chemical reaction.	Note 8
	10.	When the needle stops moving read the dial while holding the tester in a horizontal position at eye level .	5.6
	11.	Empty the tester into a pan, inspect for lumps. If the sample is not completely pulverized repeat the test with a new moisture sample. Clean the tester before reusing.	5.8
	12.	Convert the dial reading to dry mass using the chart.	5.9

AASHTO T 248-14 Reducing Samples of Aggregate to Testing Size

METHOD B-QUARTERING		
1.	Place sample on a clean hard level surface.	10.1.1
2.	Turn material over three times to mix. Form a conical pile on the last turning.	10.1.1
3.	Flatten pile using the shovel so the diameter is 4 to 8 times the thickness.	10.1.1
4.	Divide the sample into four equal portions , and remove opposite quarters using a shovel or trowel. Remove fines with a brush.	10.1.1
5.	For uneven surfaces place the sample on a mat and mix at least four times by rolling using the mat.	10.1.2
6.	Flatten pile using the shovel so the diameter is 4 to 8 times the thickness.	10.1.2
7.	Divide the sample into four equal sections using a stick .	10.1.2
8.	Remove opposite quarters. Use a brush to remove the fines .	10.1.2

Field Technician Review Class

"Practice Calculations

	Calibration of Proctor Mol	d			
Four Ir	Six Inch Mold				
Mold I. D. #: Temperature of Water used for Calibration: Unit Weight of Water:Ib. / cu. Ft.					
Weight of Baseplate, Empty Mold, and Glass Plate (grams)	Weight of Water to fill Mold (grams)				
$\begin{bmatrix} \text{Volume of} \\ \text{Mold} \\ (\text{cu. ft.}) \end{bmatrix} = \frac{\text{Weight of Water to Fill Mold (grams)}}{\begin{bmatrix} \text{Unit Weight}} \\ \text{of Water} \\ (\text{lb. / cu. ft.}) \end{bmatrix} \times \begin{bmatrix} 453.6 \text{ (grams / lb.)} \end{bmatrix}$ $= \frac{(}{(}) \times (453.6) = -() \times (453.6) = -() \times (453.6) = () \times (453.6) = ($					
Calibration Date: Test Operator:	:				

APPENDIX A - (Continued)

Temperature	Unit Weight of Water
Temp °F	lbs/cu. Ft.
68	62.315
69	62.308
70	62.301
71	62.293
72	62.285
73	62.277
74	62.269
75	62.261
76	62.252
77	62.243
78	62.234
79	62.225
80	62.216
81	62.206
82	62.196
83	62.186
84	62.176
85	62.166
86	62.155

	Calibration of Proctor Mol	d			
Four Ir	Six Inch Mold				
Mold I. D. #: Temperature of Water used for Calibration: Unit Weight of Water:Ib. / cu. Ft.					
Weight of Baseplate, Empty Mold, and Glass Plate (grams)	Weight of Water to fill Mold (grams)				
$\begin{bmatrix} \text{Volume of} \\ \text{Mold} \\ (\text{cu. ft.}) \end{bmatrix} = \frac{\text{Weight of Water to Fill Mold (grams)}}{\begin{bmatrix} \text{Unit Weight}} \\ \text{of Water} \\ (\text{lb. / cu. ft.}) \end{bmatrix} \times \begin{bmatrix} 453.6 \text{ (grams / lb.)} \end{bmatrix}$ $= \frac{(}{(}) \times (453.6) = -() \times (453.6) = -() \times (453.6) = () \times (453.6) = ($					
Calibration Date: Test Operator:	:				

CALIBRATION OF DENSITY SAND AND SAND CONE APPARATUS ARIZ 229

(A Modification of AASHTO T 191)

Date o	f Calibration:	Test Operator:							
	I. D. No. of Mold used in calibration:								
Volume of Mold used in calibration:									
		ratus:							
Identill	Cation of Sand Cone Appai	atus							
Trial	Wt. of Baseplate	Wt. of Baseplate and	Wt. of Sand to Fill						
No.	And Empty Mold (grams)	·	Mold (grams)						
1									
3									
	Average Weight	of Sand to Fill Mold =	grams						
		Average Weight of Sand to	Fill Mold						
	Density of Sand,	$D_s = \frac{\text{Average Weight of Sand to}}{(453.6 \text{ grams / lb.}) \times (\text{Volume})}$	of Mold)						
		· · ·	,						
	=	(453.6)×() =	$=$ lb./ft. 3						
Trial	Initial Wt. of	Final Wt. of	Wt. of Sand to Fill Funnel						
No.	Apparatus (grams)	Apparatus (grams)	and Baseplate (grams)						
1									
3									
3									
	Average Weight of Sand	to Fill Funnel and Baseplate = _	grams						
Volun	ne of Funnel and Baseplate.	$V_{fb} = \frac{\text{Average Weight of Sand to}}{(453.6 \text{ grams / lb.}) \times}$	Fill Funnel and Baseplate						
		(453.6 grams / lb.)×	(Density of Sand)						
			. 3						
	=	(453.6)×()	= ft. Ŭ						
Remark	(s: $\mathbf{I} = \mathbf{D_s} \times \mathbf{V_{fb}}$								
Super	visor and Date [.]								
Calibra	ilion Expiration Date								

ARIZONA DEPARTMENT OF TRANSPORTATION SAND CONE DENSITY (ARIZ 230)

USE CAPITAL LETTERS LAB NUMBER ORG NUMBE TEST NO. SUFFIX SAMF SAMPLED FROM ORIGINAL SOURCE	PLED	JECT UPER	ENG	ATL BINEEFOR ARKS	TYPE POSE LAB SIZE SIZE % MO DAY YEAR TIME LIFT NO. RDWY STATION IF MILEPOST, INPUT DECIMAL PROJECT NUMBER TRACS NUMBER					
]				
A. TOTAL WET WEIGHT OF MATERIAL FROM THE HOLE	\vdash	-	_	LB.	(8)					
B. WET WEIGHT OF MATERIAL RETAINED ON THE #4 SIEVE		-	4	LB.	a. RETAINED ON #4 = $\left(\frac{B}{A}\right) X 100$	%				
C. WET WEIGHT OF MATERIAL PASSING THE #4 SIEVE (A-B)	Щ	•	_	LB.	IF RET. ON #4 IS MORE THAN 50% (60% IF AB), GO NO FURTHER. FOR METHOD A OR ONE POINT ONLY [D (100 - a)] + a					
D. MOISTURE OF THE MATERIAL PASSING THE #4 SIEVE	_		+	<u>%</u>						
E. MOIST. CORRECTED FOR MATERIAL RETAINED ON THE #4 SIE\	/E		+	%	$E = \frac{[D (100 - a)] + a}{100}$					
F. WEIGHT OF SAND & APPARATUS BEFORE FILLING HOLE	\sqcup	_	\perp	LB.	ONE POINT PROCTOR (ARIZ 232)					
G. WEIGHT OF SAND & APPARATUS AFTER FILLING HOLE		_		LB.	b. WEIGHT OF MOLD & SOIL	LB.				
H. WEIGHT OF SAND TO FILL HOLE AND CONE (F-G)				LB.	c. WEIGHT OF MOLD	LB.				
I. WEIGHT OF SAND TO FILL CONE AND BASE PLATE	Ш			LB.	d. WEIGHT OF COMPACTED SOIL (b-c)	LB.				
J. WEIGHT OF SAND TO FILLHOLE (H-I)				LB.	e. VOLUME OF MOLD	CF				
K. DENSITY OF SAND			1	PCF	f. WET DENSITY (d / e)	PCF				
L. VOLUME OF HOLE $\left(\frac{J}{K}\right)$	Ł			CF	g. MOISTURE CONTENT	%				
M. WET DENSITY = $\left(\frac{A}{L}\right)$				PCF	FAMILY OF CURVES IDENTIFICATION &					
N. DRY DENSITY = $\left(\frac{M}{100 + E}\right) \times 100$				PCF	Q. OPTIMUM MOISTURE	%				
COMPACTION = $\left(\frac{N}{R}\right) \times 100$ OR $\left(\frac{N}{T}\right) \times 100$				%	R. MAXIMUM DRY DENSITY	PCF				
COMPACTION SPECIFICATION				%						
PROCTOR DENSITY										
PROCTOR NUMBER					TEST OPERATOR AND DATE					
PROCTOR METHOD (A, C, D, OR 1)										
O. SPECIFIC GRAVITY OF RETAINED #4					RESIDENT ENGINEER, PROJECT SUPERVISOR, OR LABMAN AN	D DATE				
P. ABSORPTION OF RETAINED #4				%						
Q. OPTIMUM MOISTURE			•	%	FOR METHOD A OR ONE POINT ONLY					
R. MAXIMUM DRY DENSITY			1	PCF	$_{S-}$ [Q (100 - a)] + a					
CORRECTION FOR RETAINED #4 (METHOD A OR ONE-	-POIN	IT ON	LY)		S= (3 (100 2)) + 2 (100 100)					
S. CORRECTED OPTIMUM MOISTURE			Ţ	%						
T. CORRECTED MAXIMUM DRY DENSITY			1	PCF	$T = \frac{[R (100 - a)] + [(56.2) (a)(O)]}{100}$					

Α	9557	141.8	6.6	F aratii	129.3	9.7	K	117.0	13.5	P	104.7	19.2	Utribos	92.1	25.8
	10%	141.5	6.7	10%	129.0	9.8	10%	116.8	13.6	10%	104.5	19.3	10%	91.9	26.0
	20%	141.3	6.7	20%	128.8	9.9	20%	116.5	13.7	20%	104.2	19.4	20%	91.7	26.1
	30%	141.0		30%	128.5	9.9	30%	116.3	13.8	30%	104.0	19.5	30%	91.4	26.3
	40%	140.7	6.8	40%	128.2	10.0		116.0	13.9	40%	103.8	19.6	40%		26.4
	50%	140.5		50%		10.1	50%		14.1	50%	103.6	19.8	50%	91.0	
	60%	140.2	7.0	60%		10.1		115.6	14.2	60%	103.3	19.9	60%	90.8	
	70%	139.9		70%		10.3		115.3	14.3	70%	103.1	20.0	70%	90.6	
	80%	139.6		80%	127.1	10.3		115.1	14.4	80%	102.9	20.1	80%	90.3	
	90%	139.4	7.1	90%		10.4		114.8	14.5	90%			90%	90.1	27.2
В	30 /6	139.1				10.5		114.6			102.4				27.4
	10%	138.8		10%		10.6		114.3	14.7	10%		20.4	10%		27.6
	20%	138.5	7.3	20%	126.1	10.6	20%		14.8	20%	101.9		20%		
	30%	138.3					30%	113.8	15.0	30%		20.7	30%		28.0
	40%	138.0		40%	125.6	10.8		113.6	15.1	40%		20.8	40%	88.9	
	50%	137.7	7.6	50%	125.4	10.9		113.3	15.2	50%		20.9	50%		28.5
	60%	137.4		60%		10.9		113.0	15.3	60%		21.0	60%		28.7
	70%	137.1	7.7	70%	124.9			112.8	15.4		100.7	21.1	70%		28.9
	80%	136.9		80%		11.1		112.5	15.6			21.3		88.0	
	90%	136.6	7.8					112.3			100.2	21.4		87.7	29.3
С	30 /0	136.3			124.2	11.2		112.0				21.5			29.5
	10%	136.1	8.0	10%				111.8	15.9		99.7	21.6	10%	87.3	
	20%	135.9		20%		11.3		111.5	16.0			21.7	20%		
	30%	135.6		30%				111.3	16.1	30%	99.2	21.9	30%		
	40%	135.4		40%		11.5		111.0	16.2	40%		22.0			
	50%	135.2	8.2	50%	123.0	11.6	50%		16.4		98.7	22.1	50%		
	60%	135.0		60%					16.5	60%	98.4	22.2	60%	86.0	30.1
	70%	134.8				11.7		110.3	16.6		98.2	22.3	70%	85.8	
	80%	134.5		80%		11.8			16.7	80%	97.9	22.5	80%	85.5	
	90%	134.3		90%							97.7	22.6			
D		134.1			121.7	11.9		109.6				22.7			30.5
	10%	133.9									97.1	22.9		84.8	
	20%	133.7	8.6		121.2	12.1			17.1	20%		23.0			
	30%	133.5	8.7	30%	121.0	12.1	30%		17.3	30%	96.6	23.2	30%	84.4	
	40%	133.3	8.7	40%	120.7	12.2	40%		17.4		96.3	23.4	40%	84.2	30.9
	50%	133.1	8.8			12.3	50%		17.5	50%		23.6		84.0	31.0
	60%	132.8	8.8	60%	120.3	12.4	60%	108.1	17.6	60%	95.7	23.7	60%	83.8	31.1
	70%	132.6	8.9	70%	120.0	12.5	70%	107.9	17.7	70%	95.4	23.9	70%	83.6	31.2
	80%	132.4	8.9	80%	119.8	12.5	80%	107.6	17.9	80%	95.2	24.1	80%	83.4	31.3
	90%	132.2	9.0		119.5			107.4				24.2		83.2	
E		132.0	9.0	J	119.3	12.7	0	107.1	18.1	Tables	94.6	24.4	Y	83.0	31.5
	10%	131.7	9.1	10%	119.1	12.8	10%	106.9	18.2	10%	94.4	24.5	10%	82.8	31.6
	20%	131.5	9.1	20%	118.8	12.9	20%	106.6	18.3	20%	94.1	24.7	20%	82.6	31.7
	30%	131.2	9.2	30%	118.6	12.9	30%	106.4	18.4	30%	93.9	24.8	30%	82.4	31.8
		130.9			118.4			106.1						82.2	31.9
	50%							105.9			93.4	25.1	50%	82.1	32.0
~~~~	60%							105.7			93.1	25.2	60%	81.9	32.1
	70%							105.4	18.9	70%		25.4		81.7	
	80%							105.2	19.0			25.5	80%	81.5	32.3
		129.6	9.6		117.2	13.4	90%	104.9	19.1	90%	92.4	25.7		81.3	32.4
				K	1		P			U					32.5

TABLE 1



### Field Technician Review Class

# **"Practice Calculations**

Calibration of Proctor Mold						
Four Ir	Six Inch Mold					
Mold I. D. #: Temperature of Water used for Calibration: Unit Weight of Water:lb. / cu. Ft.						
Weight of Baseplate, Empty Mold, and Glass Plate (grams)	Weight of Baseplate, Mold Filled With Water, and Glass Plate (grams)	Weight of Water to fill Mold (grams)				
$\begin{bmatrix} \text{Volume of} \\ \text{Mold} \\ (\text{cu. ft.}) \end{bmatrix} = \frac{\text{Weight of Water to Fill Mold (grams)}}{\begin{bmatrix} \text{Unit Weight}} \\ \text{of Water} \\ (\text{lb. / cu. ft.}) \end{bmatrix} \times \begin{bmatrix} 453.6 \text{ (grams / lb.)} \end{bmatrix}$ $= \frac{(}{(}) \times (453.6)} = \frac{\text{cu. Ft.}}{(}$						
Calibration Date: Test Operator:	:					

Calibration of Proctor Mold						
Four Ir	Six Inch Mold					
Mold I. D. #: Temperature of Water used for Calibration: Unit Weight of Water:lb. / cu. Ft.						
Weight of Baseplate, Empty Mold, and Glass Plate (grams)	Weight of Baseplate, Mold Filled With Water, and Glass Plate (grams)	Weight of Water to fill Mold (grams)				
$\begin{bmatrix} \text{Volume of} \\ \text{Mold} \\ (\text{cu. ft.}) \end{bmatrix} = \frac{\text{Weight of Water to Fill Mold (grams)}}{\begin{bmatrix} \text{Unit Weight}} \\ \text{of Water} \\ (\text{lb. / cu. ft.}) \end{bmatrix} \times \begin{bmatrix} 453.6 \text{ (grams / lb.)} \end{bmatrix}$ $= \frac{(}{(}) \times (453.6)} = \frac{\text{cu. Ft.}}{(}$						
Calibration Date: Test Operator:	:					

# CALIBRATION OF DENSITY SAND AND SAND CONE APPARATUS ARIZ 229

(A Modification of AASHTO T 191)

Date o	f Calibration:	Test Operator:						
		on:						
Volume of Mold used in calibration:								
		ratus:						
lueritiii		atus						
Trial	Wt. of Baseplate	Wt. of Baseplate and	Wt. of Sand to Fill					
No.	And Empty Mold (grams)	Mold Filled with Sand (grams)	Mold (grams)					
1								
3								
	Average Weight	of Sand to Fill Mold =	grams					
	Density of Sand	$D_s = \frac{\text{Average Weight of Sand to}}{(453.6 \text{ grams / lb.}) \times (\text{Volume})}$	Fill Mold_					
	Bonsity of Oand,	(453.6 grams / lb.)×(Volume	of Mold)					
	_	_	_ Ib /ft 3					
	_	(453.6)×( )	– ID./It.					
Trial	Initial Wt. of	Final Wt. of	Wt. of Sand to Fill Funnel					
No.	Apparatus (grams)	Apparatus (grams)	and Baseplate (grams)					
1								
3								
	Average Weight of Sand	to Fill Funnel and Baseplate = _	_grams					
		Average Weight of Condto	Fill Funnal and Daggalata					
Volun	ne of Funnel and Baseplate	$V_{fb} = \frac{\text{Average Weight of Sand to}}{(453.6 \text{ grams / lb.}) \times}$	(Density of Sand)					
		(+00.0 grams / ib.)^	(Definity of Garia)					
	=	(453.6)×( )	= ft. ³					
		(403.0)×( )						
Remar	ks: $I = D_a \times V_{ab}$							
Super	visor and Date:		_					
Janore	aton Expiration Date							

# ARIZONA DEPARTMENT OF TRANSPORTATION SAND CONE DENSITY (ARIZ 230)

USE CAPITAL LETTERS  LAB NUMBER ORG NUMB  TEST NO. SUFFIX SAM  SAMPLED FROM	ER PLED	BY	M	MATL		MO DAY YEAR TIME	ZE %				
ORIGINAL SOURCE		UPE	RVIS	IGINE SOR		/ IF MILEPOST, INPUT DECIM PROJECT NUMBER TRACS NUM					
A. TOTAL WET WEIGHT OF MATERIAL FROM THEHOLE		+	_	L	ĽВ.	( B )					
B. WET WEIGHT OF MATERIAL RETAINED ON THE #4 SIEVE		-	_	L	LB.	a. RETAINED ON #4 = $\left(\frac{B}{A}\right) X 100$		%			
C. WET WEIGHT OF MATERIAL PASSING THE #4 SIEVE (A-B)	Щ	•	_		LB.	IF RET. ON #4 IS MORE THAN 50% (60% IF AB), GO NO FI FOR METHOD A OR ONE POINT ONLY	JRTHER				
D. MOISTURE OF THE MATERIAL PASSING THE #4 SIEVE			_	' '	%						
E. MOIST. CORRECTED FOR MATERIAL RETAINED ON THE #4 SIE	/E		•	<u>'</u>	%	$E = \frac{[D (100 - a)] + a}{100}$					
F. WEIGHT OF SAND & APPARATUS BEFORE FILLING HOLE	Ш	•		L	LB.	ONE POINT PROCTOR (ARIZ 232)					
G. WEIGHT OF SAND & APPARATUS AFTER FILLING HOLE	Ш	•			LB.	b. WEIGHT OF MOLD & SOIL	•	LB.			
H. WEIGHT OF SAND TO FILL HOLE AND CONE (F-G)		•		L	LB.	c. WEIGHT OF MOLD	•	LB.			
I. WEIGHT OF SAND TO FILL CONE AND BASE PLATE		•		L	LB.	d. WEIGHT OF COMPACTED SOIL (b-c)	•	LB.			
J. WEIGHT OF SAND TO FILLHOLE (H-I)		•		L	LB.	e. VOLUME OF MOLD		CF			
K. DENSITY OF SAND				P	CF	f. WET DENSITY (d / e)	•	PCF			
L. VOLUME OF HOLE $\left(\frac{J}{K}\right)$	<u> </u>				CF	g. MOISTURE CONTENT	•	%			
M. WET DENSITY = $\left(\frac{A}{L}\right)$				P	CF	FAMILY OF CURVES IDENTIFICATION	&				
N. DRY DENSITY = $\left(\frac{M}{100 + E}\right) \times 100$				Р	CF	Q. OPTIMUM MOISTURE	1	%			
COMPACTION = $\left(\frac{N}{R}\right) \times 100$ OR $\left(\frac{N}{T}\right) \times 100$					%	R. MAXIMUM DRY DENSITY		PCF			
COMPACTION SPECIFICATION					%						
PROCTOR DENSITY											
PROCTOR NUMBER						TEST OPERATOR AND DATE					
PROCTOR METHOD (A, C, D, OR 1)											
O. SPECIFIC GRAVITY OF RETAINED #4	T.					RESIDENT ENGINEER, PROJECT SUPERVISOR, OR LAB	MAN AND	DATE			
P. ABSORPTION OF RETAINED #4				-	%						
Q. OPTIMUM MOISTURE				, (	%	FOR METHOD A OR ONE POINT ONL	Y				
R. MAXIMUM DRY DENSITY			1	P	CF	$S_{-}$ [Q(100 - a)] + a					
CORRECTION FOR RETAINED #4 (METHOD A OR ONE	-POIN	IT ON	NLY.	)		$S = \frac{[Q(100 - 2)] + 2}{100}$					
S. CORRECTED OPTIMUM MOISTURE				T	%						
T. CORRECTED MAXIMUM DRY DENSITY			_		CF	$T = \frac{[R (100 - a)] + [(56.2) (a)(O)]}{100}$	_				